Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Nat Commun ; 15(1): 3290, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632225

RESUMO

The functions of cellular organelles and sub-compartments depend on their protein content, which can be characterized by spatial proteomics approaches. However, many spatial proteomics methods are limited in their ability to resolve organellar sub-compartments, profile multiple sub-compartments in parallel, and/or characterize membrane-associated proteomes. Here, we develop a cross-link assisted spatial proteomics (CLASP) strategy that addresses these shortcomings. Using human mitochondria as a model system, we show that CLASP can elucidate spatial proteomes of all mitochondrial sub-compartments and provide topological insight into the mitochondrial membrane proteome. Biochemical and imaging-based follow-up studies confirm that CLASP allows discovering mitochondria-associated proteins and revising previous protein sub-compartment localization and membrane topology data. We also validate the CLASP concept in synaptic vesicles, demonstrating its applicability to different sub-cellular compartments. This study extends the scope of cross-linking mass spectrometry beyond protein structure and interaction analysis towards spatial proteomics, and establishes a method for concomitant profiling of sub-organelle and membrane proteomes.


Assuntos
Proteínas de Membrana , Proteoma , Humanos , Proteoma/metabolismo , Proteínas de Membrana/metabolismo , Proteômica/métodos , Organelas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Nat Commun ; 15(1): 2093, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453931

RESUMO

Adhesions are critical for anchoring cells in their environment, as signaling platforms and for cell migration. In line with these diverse functions different types of cell-matrix adhesions have been described. Best-studied are the canonical integrin-based focal adhesions. In addition, non-canonical integrin adhesions lacking focal adhesion proteins have been discovered. These include reticular adhesions also known as clathrin plaques or flat clathrin lattices, that are enriched in clathrin and other endocytic proteins, as well as extensive adhesion networks and retraction fibers. How these different adhesion types that share a common integrin backbone are related and whether they can interconvert is unknown. Here, we identify the protein stonin1 as a marker for non-canonical αVß5 integrin-based adhesions and demonstrate by live cell imaging that canonical and non-canonical adhesions can reciprocally interconvert by the selective exchange of components on a stable αVß5 integrin scaffold. Hence, non-canonical adhesions can serve as points of origin for the generation of canonical focal adhesions.


Assuntos
Adesões Focais , Integrinas , Integrinas/metabolismo , Adesões Focais/metabolismo , Junções Célula-Matriz/metabolismo , Movimento Celular , Clatrina/metabolismo , Adesão Celular
3.
Plant Cell ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242838

RESUMO

Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis towards the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.

4.
PLoS One ; 19(1): e0297039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295046

RESUMO

BACKGROUND: The COVID-19 pandemic revealed a need for better collaboration among research, care, and management in Germany as well as globally. Initially, there was a high demand for broad data collection across Germany, but as the pandemic evolved, localized data became increasingly necessary. Customized dashboards and tools were rapidly developed to provide timely and accurate information. In Saxony, the DISPENSE project was created to predict short-term hospital bed capacity demands, and while it was successful, continuous adjustments and the initial monolithic system architecture of the application made it difficult to customize and scale. METHODS: To analyze the current state of the DISPENSE tool, we conducted an in-depth analysis of the data processing steps and identified data flows underlying users' metrics and dashboards. We also conducted a workshop to understand the different views and constraints of specific user groups, and brought together and clustered the information according to content-related service areas to determine functionality-related service groups. Based on this analysis, we developed a concept for the system architecture, modularized the main services by assigning specialized applications and integrated them into the existing system, allowing for self-service reporting and evaluation of the expert groups' needs. RESULTS: We analyzed the applications' dataflow and identified specific user groups. The functionalities of the monolithic application were divided into specific service groups for data processing, data storage, predictions, content visualization, and user management. After composition and implementation, we evaluated the new system architecture against the initial requirements by enabling self-service reporting to the users. DISCUSSION: By modularizing the monolithic application and creating a more flexible system, the challenges of rapidly changing requirements, growing need for information, and high administrative efforts were addressed. CONCLUSION: We demonstrated an improved adaptation towards the needs of various user groups, increased efficiency, and reduced burden on administrators, while also enabling self-service functionalities and specialization of single applications on individual service groups.


Assuntos
Armazenamento e Recuperação da Informação , Pandemias , Humanos , Coleta de Dados , Alemanha
6.
Front Cell Dev Biol ; 11: 1305680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099299

RESUMO

The plasma membrane of mammalian cells links transmembrane receptors, various structural components, and membrane-binding proteins to subcellular processes, allowing inter- and intracellular communication. Therefore, membrane-binding proteins, together with structural components such as actin filaments, modulate the cell membrane in their flexibility, stiffness, and curvature. Investigating membrane components and curvature in cells remains challenging due to the diffraction limit in light microscopy. Preparation of 5-15-nm-thin plasma membrane sheets and subsequent inspection by metal replica transmission electron microscopy (TEM) reveal detailed information about the cellular membrane topology, including the structure and curvature. However, electron microscopy cannot identify proteins associated with specific plasma membrane domains. Here, we describe a novel adaptation of correlative super-resolution light microscopy and platinum replica TEM (CLEM-PREM), allowing the analysis of plasma membrane sheets with respect to their structural details, curvature, and associated protein composition. We suggest a number of shortcuts and troubleshooting solutions to contemporary PREM protocols. Thus, implementation of super-resolution stimulated emission depletion (STED) microscopy offers significant reduction in sample preparation time and reduced technical challenges for imaging and analysis. Additionally, highly technical challenges associated with replica preparation and transfer on a TEM grid can be overcome by scanning electron microscopy (SEM) imaging. The combination of STED microscopy and platinum replica SEM or TEM provides the highest spatial resolution of plasma membrane proteins and their underlying membrane and is, therefore, a suitable method to study cellular events like endocytosis, membrane trafficking, or membrane tension adaptations.

7.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37883971

RESUMO

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Assuntos
Lisossomos , Transdução de Sinais , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Fenômenos Fisiológicos Celulares
8.
Neuron ; 111(23): 3765-3774.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37738980

RESUMO

Exocytosis and endocytosis are essential physiological processes and are of prime importance for brain function. Neurotransmission depends on the Ca2+-triggered exocytosis of synaptic vesicles (SVs). In neurons, exocytosis is spatiotemporally coupled to the retrieval of an equal amount of membrane and SV proteins by compensatory endocytosis. How exocytosis and endocytosis are balanced to maintain presynaptic membrane homeostasis and, thereby, sustain brain function is essentially unknown. We combine mouse genetics with optical imaging to show that the SV calcium sensor Synaptotagmin 1 couples exocytic SV fusion to the endocytic retrieval of SV membranes by promoting the local activity-dependent formation of the signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at presynaptic sites. Interference with these mechanisms impairs PI(4,5)P2-triggered SV membrane retrieval but not exocytic SV fusion. Our findings demonstrate that the coupling of SV exocytosis and endocytosis involves local Synaptotagmin 1-induced lipid signaling to maintain presynaptic membrane homeostasis in central nervous system neurons.


Assuntos
Vesículas Sinápticas , Sinaptotagmina I , Animais , Camundongos , Endocitose/fisiologia , Exocitose/fisiologia , Lipídeos , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
9.
Nat Microbiol ; 8(9): 1732-1747, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550507

RESUMO

Herpesviruses assemble large enveloped particles that are difficult to characterize structurally due to their size, fragility and complex multilayered proteome with partially amorphous nature. Here we used crosslinking mass spectrometry and quantitative proteomics to derive a spatially resolved interactome map of intact human cytomegalovirus virions. This enabled the de novo allocation of 32 viral proteins into four spatially resolved virion layers, each organized by a dominant viral scaffold protein. The viral protein UL32 engages with all layers in an N-to-C-terminal radial orientation, bridging nucleocapsid to viral envelope. We observed the layer-specific incorporation of 82 host proteins, of which 39 are selectively recruited. We uncovered how UL32, by recruitment of PP-1 phosphatase, antagonizes binding to 14-3-3 proteins. This mechanism assures effective viral biogenesis, suggesting a perturbing role of UL32-14-3-3 interaction. Finally, we integrated these data into a coarse-grained model to provide global insights into the native configuration of virus and host protein interactions inside herpesvirions.


Assuntos
Citomegalovirus , Vírion , Humanos , Citomegalovirus/metabolismo , Vírion/metabolismo , Proteínas Virais/metabolismo , Nucleocapsídeo/metabolismo , Proteoma
10.
Zentralbl Chir ; 2023 Aug 10.
Artigo em Alemão | MEDLINE | ID: mdl-37562434

RESUMO

INTRODUCTION: In vascular surgery too, more services and procedures will have to be shifted from the previous inpatient to the outpatient sector in the future. Therefore, the previous and new legal requirements as well as their implementation in vascular surgery will be explained and evaluated. MATERIAL AND METHODS: Professional policy analysis from a perspective of medical vascular surgery. RESULTS: The AOP catalog from 01.01.2023 was extended by 208 additional OPS codes. The inpatient performance of services which, according to the AOP contract, must be regularly performed on an outpatient basis, are now to be justified on the basis of context factors.A special sector-equivalent remuneration, which is independent of whether the remunerated service is performed on an outpatient or inpatient basis, is a prerequisite for a cost-covering expansion of outpatient operations and inpatient-replacing services. The rehabilitation of primary varicosis under outpatient conditions is undoubtedly the standard. The majority of AV shunt installations are performed as inpatient procedures. No new OPS codes were added to the 2023 AOP catalog for varicose vein, shunt and endovascular surgery. DISCUSSION: The shift of inpatient services to the outpatient sector can be a feasible path, based on the experience of other European countries. However, the structures, economic conditions and incentives should first be created to successfully promote transfer to outpatients. Integrated care offers the possibility for the health insurance funds to conclude contracts with the service providers named in § 140a of the Social Code, paragraph 3, for special care. The use of telemedicine in the sense of tele-premedication or tele-monitoring can be a way to expand outpatient surgery, especially in rural regions. In order to enable therapy concepts from one expert in vascular medicine, the outpatient service billing of interventional procedures must also be demanded by vascular surgeons and specialists. CONCLUSION: The potential to transform inpatient services into the outpatient setting of service provision is realisable in vascular surgery in the core areas of varicose vein surgery, shunt surgery and peripheral interventional procedures under specific conditions.

11.
Eur J Immunol ; 53(10): e2350408, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37435628

RESUMO

The structure-based design of antigens holds promise for developing vaccines with higher efficacy and improved safety profiles. We postulate that abrogation of host receptor interaction bears potential for the improvement of vaccines by preventing antigen-induced modification of receptor function as well as the displacement or masking of the immunogen. Antigen modifications may yet destroy epitopes crucial for antibody neutralization. Here, we present a methodology that integrates deep mutational scans to identify and score SARS-CoV-2 receptor binding domain variants that maintain immunogenicity, but lack interaction with the widely expressed host receptor. Single point mutations were scored in silico, validated in vitro, and applied in vivo. Our top-scoring variant receptor binding domain-G502E prevented spike-induced cell-to-cell fusion, receptor internalization, and improved neutralizing antibody responses by 3.3-fold in rabbit immunizations. We name our strategy BIBAX for body-inert, B-cell-activating vaccines, which in the future may be applied beyond SARS-CoV-2 for the improvement of vaccines by design.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Coelhos , Anticorpos Neutralizantes , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Antivirais
12.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240354

RESUMO

Dendritic cells (DC) are critical cellular mediators of host immunity, notably by expressing a broad panel of pattern recognition receptors. One of those receptors, the C-type lectin receptor DC-SIGN, was previously reported as a regulator of endo/lysosomal targeting through functional connections with the autophagy pathway. Here, we confirmed that DC-SIGN internalization intersects with LC3+ autophagy structures in primary human monocyte-derived dendritic cells (MoDC). DC-SIGN engagement promoted autophagy flux which coincided with the recruitment of ATG-related factors. As such, the autophagy initiation factor ATG9 was found to be associated with DC-SIGN very early upon receptor engagement and required for an optimal DC-SIGN-mediated autophagy flux. The autophagy flux activation upon DC-SIGN engagement was recapitulated using engineered DC-SIGN-expressing epithelial cells in which ATG9 association with the receptor was also confirmed. Finally, Stimulated emission depletion (STED) microscopy performed in primary human MoDC revealed DC-SIGN-dependent submembrane nanoclusters formed with ATG9, which was required to degrade incoming viruses and further limit DC-mediated transmission of HIV-1 infection to CD4+ T lymphocytes. Our study unveils a physical association between the Pattern Recognition Receptor DC-SIGN and essential components of the autophagy pathway contributing to early endocytic events and the host's antiviral immune response.


Assuntos
HIV-1 , Humanos , HIV-1/fisiologia , Antivirais/metabolismo , Células Dendríticas , Lectinas Tipo C/metabolismo , Autofagia
13.
Gefasschirurgie ; 28(1): 44-51, 2023.
Artigo em Alemão | MEDLINE | ID: mdl-36415593

RESUMO

Introduction: The demographic development in Germany, especially in Saxony-Anhalt (SA), also poses challenges for vascular surgery, as the incidence of vascular diseases has increased following demographic change. For example, the prevalence of peripheral arterial occlusive disease (PAOD) in industrialised countries is estimated at around 10-20% in people over 60 years of age; thus, the number of people affected will also increase here with demographic change. Especially in rural areas, it seems to be more difficult for patients to reach appropriate specialist treatment. Material and methods: A compact narrative brief review, based on selective references from the current medical-scientific literature and our own experiences from daily practice in setting up a vascular surgery department in a rural area. Results: In 2020, the population in the rural district of Jerichower Land (SA) was approximately 89,403 (male: 44,489; female: 44,914). The age distribution in the age groups relevant for PAOD is as follows: 65-74 years-total, 12.38%; 75 years and older-total, 13.85%; average age, 48.36 years (population density, 56.4/km2). According to the SA Association of Statutory Health Insurance Physicians, there were 605 patients for every doctor in Burg (SA) in 2019.There was a total of 5087 people in need of long-term care in the district in 2019. With such a low population density, low doctor density, high mean age, high proportion of people over 75 years of age and a high number of people in need of care, limited mobility and accessibility to vascular surgery care are to be expected, which was also reflected in the high number of PAOD of stage IV (FONTAINE) in the initial patient clientele.Every establishment of a vascular surgery department is associated with a considerable financial and material investment, which the provider of the facility must be prepared to make.In addition to the material investment, the availability of appropriately qualified staff to implement and maintain continuity of care must also be seriously considered. Conclusion: The high proportion of residents at risk of and suffering from PAOD in a rural area with low population and doctor density allows investment in the establishment of a new vascular surgery department to ensure local care in this patient group with limited mobility and self-help, thus, ultimately from an appropriate health policy perspective but also from the perspective of a relevant revenue outlook.

14.
Cells ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497202

RESUMO

Acute respiratory distress syndrome (ARDS) due to pulmonary infections is associated with high morbidity and mortality. Upon inflammation, the alarmin S100A8/A9 is released and stimulates neutrophil recruitment mainly via binding to Toll-like receptor 4 (TLR4). TLR4 is also expressed on platelets, which modulate the immune response through direct interaction with leukocytes. In a murine model of Klebsiella pneumoniae-induced pulmonary inflammation, global S100A9 deficiency resulted in diminished neutrophil recruitment into the lung alveoli and neutrophil accumulation in the intravascular space, indicating an impaired neutrophil migration. A lack of TLR4 on platelets resulted in reduced neutrophil counts in the whole lung, emphasising the impact of TLR4-mediated platelet activity on neutrophil behaviour. Flow cytometry-based analysis indicated elevated numbers of platelet-neutrophil complexes in the blood of S100A9-/- mice. Intravital microscopy of the murine cremaster muscle confirmed these findings and further indicated a significant increase in neutrophil-platelet complex formation in S100A9-/- mice, which was reversed by administration of the S100A8/A9 tetramer. An in vitro bilayer assay simulated the murine alveolar capillary barrier during inflammation and validated significant differences in transmigration behaviour between wild-type and S100A9-/- neutrophils. This study demonstrates the role of S100A8/A9 during platelet-neutrophil interactions and neutrophil recruitment during pulmonary inflammation.


Assuntos
Calgranulina A , Calgranulina B , Neutrófilos , Pneumonia Bacteriana , Animais , Camundongos , Alarminas/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Inflamação/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Camundongos Knockout , Pneumonia Bacteriana/metabolismo
15.
Chem Commun (Camb) ; 58(99): 13724-13727, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36427021

RESUMO

Herein, we evaluate near-infrared ATTO700 as an acceptor in SNAP- and Halo-tag protein labelling for Förster Resonance Energy Transfer (FRET) by ensemble and single molecule measurements. Microscopy of cell surface proteins in live cells is perfomed including super-resolution stimulated emission by depletion (STED) nanoscopy.


Assuntos
Microscopia , Nanotecnologia , Transferência Ressonante de Energia de Fluorescência , Proteínas
16.
Nat Commun ; 13(1): 7234, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433988

RESUMO

Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell.


Assuntos
Cavéolas , Caveolinas , Cavéolas/metabolismo , Membrana Celular/metabolismo , Caveolinas/metabolismo , Endocitose , Dinaminas/metabolismo , Proteínas/metabolismo
17.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36259389

RESUMO

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Assuntos
Insuficiência Cardíaca , Hipertensão , Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Microtomografia por Raio-X , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipertensão/complicações , Hipertensão/genética , Miócitos Cardíacos/metabolismo , Cardiomegalia , RNA
18.
Anaesthesiologie ; 71(10): 741-749, 2022 10.
Artigo em Alemão | MEDLINE | ID: mdl-36064976

RESUMO

BACKGROUND: Acutely occurring organ damage significantly contributes to morbidity and mortality in the perioperative context. OBJECTIVE: This article highlights new clinical perspectives on how perioperative organ damage can be prevented and ameliorated by influencing the high mobility group box 1 protein (HMGB1) signaling. MATERIAL AND METHODS: A MEDLINE search was performed in the fields of clinical and basic research. The presentation of basic mechanisms of perioperative organ damage and the discussion of the importance of HMGB1 in prevention and treatment by pharmaceutical and nonpharmaceutical interventions are the focus of the review. RESULTS: The HMGB1 is a central element in the pathogenesis of septic and aseptic inflammation-induced organ damage. Remote ischemic preconditioning (RIPC) and dexmedetomidine are highly effective approaches to mitigate or prevent organ damage. CONCLUSION: The RIPC and dexmedetomidine offer protective properties in ischemia-reperfusion injury as well as in inflammation-related organ damage, which are mediated by HMGB1, among others. This effectively protects the kidneys, heart, lungs, liver and brain. The application of these concepts should be considered in routine clinical practice.


Assuntos
Dexmedetomidina , Proteína HMGB1 , Precondicionamento Isquêmico , Dexmedetomidina/farmacologia , Proteína HMGB1/metabolismo , Humanos , Inflamação , Preparações Farmacêuticas
19.
Chem Sci ; 13(29): 8605-8617, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974762

RESUMO

Rhodamine fluorophores are setting benchmarks in fluorescence microscopy. Herein, we report the deuterium (d12) congeners of tetramethyl(silicon)rhodamine, obtained by isotopic labelling of the four methyl groups, show improved photophysical parameters (i.e. brightness, lifetimes) and reduced chemical bleaching. We explore this finding for SNAP- and Halo-tag labelling in live cells, and highlight enhanced properties in several applications, such as fluorescence activated cell sorting, fluorescence lifetime microscopy, stimulated emission depletion nanoscopy and single-molecule Förster-resonance energy transfer. We finally extend this idea to other dye families and envision deuteration as a generalizable concept to improve existing and to develop new chemical biology probes.

20.
Nat Commun ; 13(1): 4985, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008380

RESUMO

The paracellular passage of ions and small molecules across epithelia is controlled by tight junctions, complex meshworks of claudin polymers that form tight seals between neighboring cells. How the nanoscale architecture of tight junction meshworks enables paracellular passage of specific ions or small molecules without compromising barrier function is unknown. Here we combine super-resolution stimulated emission depletion microscopy in live and fixed cells and tissues, multivariate classification of super-resolution images and fluorescence resonance energy transfer to reveal the nanoscale organization of tight junctions formed by mammalian claudins. We show that only a subset of claudins can assemble into characteristic homotypic meshworks, whereas tight junctions formed by multiple claudins display nanoscale organization principles of intermixing, integration, induction, segregation, and exclusion of strand assemblies. Interestingly, channel-forming claudins are spatially segregated from barrier-forming claudins via determinants mainly encoded in their extracellular domains also known to harbor mutations leading to human diseases. Electrophysiological analysis of claudins in epithelial cells suggests that nanoscale segregation of distinct channel-forming claudins enables barrier function combined with specific paracellular ion flux across tight junctions.


Assuntos
Claudinas , Junções Íntimas , Animais , Claudinas/genética , Células Epiteliais , Epitélio , Humanos , Íons , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...